Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38353924

RESUMO

ß2-Adrenoceptors (ß2-ARs) are the most abundant subtype of adrenergic receptors in skeletal muscles. Their activation via a stabilization of postsynaptic architecture has beneficial effects in certain models of neuromuscular disorders. However, the ability of ß2-ARs to regulate neuromuscular transmission at the presynaptic level is poorly understood. Using electrophysiological recordings and fluorescent FM dyes, we found that ß2-AR activation with fenoterol enhanced an involvement of synaptic vesicles in exocytosis and neurotransmitter release during intense activity at the neuromuscular junctions of mouse diaphragm. This was accompanied by an improvement of contractile responses to phrenic nerve stimulation (but not direct stimulation of the muscle fibers) at moderate-to-high frequencies. ß2-ARs mainly reside in lipid microdomains enriched with cholesterol and sphingomyelin. The latter is hydrolyzed by sphingomyelinases, whose upregulation occurs in many conditions characterized by muscle atrophy and sympathetic nerve hyperactivity. Sphingomyelinase treatment reversed the effects of ß2-AR agonist on the neurotransmitter release and synaptic vesicle recruitment to the exocytosis during intense activity. Inhibition of Gi protein with pertussis toxin completely prevented the sphingomyelinase-mediated inversion in the ß2-AR agonist action. Note that lipid raft disrupting enzyme cholesterol oxidase had the same effect on ß2-AR agonist-mediated changes in neurotransmission as sphingomyelinase. Thus, ß2-AR agonist fenoterol augmented recruitment and release of synaptic vesicles during intense activity in the diaphragm neuromuscular junctions. Sphingomyelin hydrolysis inversed the effects of ß2-AR agonist on neurotransmission probably via switching to Gi protein-dependent signaling. This phenomenon may reflect a dependence of the ß2-AR signaling on lipid raft integrity in the neuromuscular junctions.

2.
Arch Biochem Biophys ; 749: 109803, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37955112

RESUMO

Membrane cholesterol oxidation is a hallmark of redox and metabolic imbalance, and it may accompany neurodegenerative disorders. Using microelectrode recordings of postsynaptic responses as well as fluorescent dyes for monitoring synaptic vesicle cycling and membrane properties, the action of enzymatic cholesterol oxidation on neuromuscular transmission was studied in the mice diaphragms. Cholesterol oxidase (ChO) at low concentration disturbed lipid-ordering specifically in the synaptic membranes, but it did not change markedly spontaneous exocytosis and evoked release in response to single stimuli. At low external Ca2+ conditions, analysis of single exocytotic events revealed a decrease in minimal synaptic delay and the probability of exocytosis upon plasmalemmal cholesterol oxidation. At moderate- and high-frequency activity, ChO treatment enhanced both neurotransmitter and FM-dye release. Furthermore, it precluded a change in exocytotic mode from full-fusion to kiss-and-run during high-frequency stimulation. Accumulation of extracellular acetylcholine (without stimulation) dependent on vesamicol-sensitive transporters was suppressed by ChO. The effects of plasmalemmal cholesterol oxidation on both neurotransmitter/dye release at intense activity and external acetylcholine levels were reversed when synaptic vesicle membranes were also exposed to ChO (i.e., the enzyme treatment was combined with induction of exo-endocytotic cycling). Thus, we suggest that plasmalemmal cholesterol oxidation affects exocytotic machinery functioning, enhances synaptic vesicle recruitment to the exocytosis and decreases extracellular neurotransmitter levels at rest, whereas ChO acting on synaptic vesicle membranes suppresses the participation of the vesicles in the subsequent exocytosis and increases the neurotransmitter leakage. The mechanisms underlying ChO action can be related to the lipid raft disruption.


Assuntos
Acetilcolina , Colesterol Oxidase , Camundongos , Animais , Colesterol Oxidase/metabolismo , Colesterol Oxidase/farmacologia , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Transmissão Sináptica/fisiologia , Junção Neuromuscular/metabolismo , Colesterol/metabolismo , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia
3.
Cell Mol Neurobiol ; 43(8): 4157-4172, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689594

RESUMO

TRPV1 represents a non-selective transient receptor potential cation channel found not only in sensory neurons, but also in motor nerve endings and in skeletal muscle fibers. However, the role of TRPV1 in the functioning of the neuromuscular junction has not yet been fully established. In this study, the Levator Auris Longus muscle preparations were used to assess the effect of pharmacological activation of TRPV1 channels on neuromuscular transmission. The presence of TRPV1 channels in the nerve terminal and in the muscle fiber was confirmed by immunohistochemistry. It was verified by electrophysiology that the TRPV1 channel agonist capsaicin inhibits the acetylcholine release, and this effect was completely absent after preliminary application of the TRPV1 channel blocker SB 366791. Nerve stimulation revealed an increase of amplitude of isometric tetanic contractions upon application of capsaicin which was also eliminated after preliminary application of SB 366791. Similar data were obtained during direct muscle stimulation. Thus, pharmacological activation of TRPV1 channels affects the functioning of both the pre- and postsynaptic compartment of the neuromuscular junction. A moderate decrease in the amount of acetylcholine released from the motor nerve allows to maintain a reserve pool of the mediator to ensure a longer signal transmission process, and an increase in the force of muscle contraction, in its turn, also implies more effective physiological muscle activity in response to prolonged stimulation. This assumption is supported by the fact that when muscle was indirect stimulated with a fatigue protocol, muscle fatigue was attenuated in the presence of capsaicin.


Assuntos
Acetilcolina , Capsaicina , Camundongos , Animais , Capsaicina/farmacologia , Acetilcolina/farmacologia , Junção Neuromuscular , Músculo Esquelético , Canais de Cátion TRPV
4.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769977

RESUMO

The decay kinetics of Gd3Al2Ga3O12:Ce3+ single crystal luminescence were studied under dense laser excitation. It was shown that the decay times as well as the intensity of Ce3+ luminescence depend on the excitation density. The observed effects were ascribed to the interaction between excitons as well as to the features of energy transfer from the excitons to Ce3+. The numerical simulation of the experimental results was performed for justification of the proposed model.

5.
Life Sci ; 318: 121507, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801470

RESUMO

AIMS: Sphingomyelin is an abundant component of the presynaptic membrane and an organizer of lipid rafts. In several pathological conditions, sphingomyelin is hydrolyzed due to an upregulation and release of secretory sphingomyelinases (SMases). Herein, the effects of SMase on exocytotic neurotransmitter release were studied in the diaphragm neuromuscular junctions of mice. MAIN METHODS: Microelectrode recordings of postsynaptic potentials and styryl (FM) dyes were used to estimate neuromuscular transmission. Membrane properties were assessed with fluorescent techniques. KEY FINDINGS: Application of SMase at a low concentration (0.01 U ml-1) led to a disruption of lipid-packing in the synaptic membranes. Neither spontaneous exocytosis nor evoked neurotransmitter release (in response to single stimuli) were affected by SMase treatment. However, SMase significantly increased neurotransmitter release and the rate of fluorescent FM-dye loss from the synaptic vesicles at 10, 20 and 70 Hz stimulation of the motor nerve. In addition, SMase treatment prevented a shift of the exocytotic mode from "full-collapse" fusion to "kiss-and-run" during high-frequency (70 Hz) activity. The potentiating effects of SMase on neurotransmitter release and FM-dye unloading were suppressed when synaptic vesicle membranes were also exposed to this enzyme (i.e., stimulation occurred during SMase treatment). SIGNIFICANCE: Thus, hydrolysis of the plasma membrane sphingomyelin can enhance mobilization of synaptic vesicles and facilitate full fusion mode of exocytosis, but SMase acting on vesicular membrane had a depressant effect on the neurotransmission. Partially, the effects of SMase can be related with the changes in synaptic membrane properties and intracellular signaling.


Assuntos
Esfingomielina Fosfodiesterase , Vesículas Sinápticas , Camundongos , Animais , Vesículas Sinápticas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Esfingomielinas/farmacologia , Transmissão Sináptica , Junção Neuromuscular , Neurotransmissores/metabolismo , Exocitose
6.
Sci Rep ; 10(1): 10009, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561886

RESUMO

The in situ exploration of Titan's atmosphere requires the development of laboratory experiments to understand the molecular growth pathways initiated by photochemistry in the upper layers of the atmosphere. Key species and dominant reaction pathways are used to feed chemical network models that reproduce the chemical and physical processes of this complex environment. Energetic UV photons initiate highly efficient chemistry by forming reactive species in the ionospheres of the satellite. We present here a laboratory experiment based on a new closed and removable photoreactor coupled here to an Extreme Ultraviolet (EUV) irradiation beam produced by the high-order harmonic generation of a femtosecond laser. This type of EUV stable source allow long-term irradiation experiments in which a plethora of individual reactions can take place. In order to demonstrate the validity of our approach, we irradiated for 7 hours at 89.2 nm, a gas mixture based on N2/CH4 (5%). Using only one wavelength, products of the reaction reveal an efficient photochemistry with the formation of large hydrocarbons but especially organic compounds rich in nitrogen similar to Titan. Among these nitrogen compounds, new species had never before been identified in the mass spectra obtained in situ in Titan's atmosphere. Their production in this experiment, on the opposite, corroborates previous experimental measurements in the literature on the chemical composition of aerosol analogues produced in the laboratory. Diazo-compounds such as dimethyldiazene (C2H6N2), have been observed and are consistent with the large nitrogen incorporation observed by the aerosols collector pyrolysis instrument of the Huygens probe. This work represents an important step forward in the use of a closed cell chamber irradiated by the innovative EUV source for the generation of photochemical analogues of Titan aerosols. This approach allows to better constrain and understand the growth pathways of nitrogen incorporation into organic aerosols in Titan's atmosphere.

7.
Rev Sci Instrum ; 90(1): 015107, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709164

RESUMO

In this article, we present a new industrial gamma-ray imaging system. This system takes advantage of a time-modulated random coded aperture (TMRCA). The gamma-ray detector coupled to the TMRCA can be position-sensitive or non-position-sensitive. The TMRCA imaging system could offer the ability to identify radioactive sources without losing spatial resolution. With a non-position-sensitive BGO detector, a prototype TMRCA imaging system was constructed. The prototype system was investigated with two gamma-ray sources (137Cs, 60Co) and a 238Pu-Be neutron source, which was placed in a paraffin moderator to produce an extended source. The experimental results suggest that the TMRCA imaging system offers the opportunity to achieve high spatial-energy resolution cost-effectively for high-energy gamma rays.

8.
Sci Rep ; 7(1): 8414, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827741

RESUMO

Neurons communicate by brief bursts of spikes separated by silent phases and information may be encoded into the burst duration or through the structure of the interspike intervals. Inspired by the importance of bursting activities in neuronal computation, we have investigated the bursting oscillations of an optically injected quantum dot laser. We find experimentally that the laser periodically switches between two distinct operating states with distinct optical frequencies exhibiting either fast oscillatory or nearly steady state evolutions (two-color bursting oscillations). The conditions for their emergence and their control are analyzed by systematic simulations of the laser rate equations. By projecting the bursting solution onto the bifurcation diagram of a fast subsystem, we show how a specific hysteresis phenomenon explains the transitions between active and silent phases. Since size-controlled bursts can contain more information content than single spikes our results open the way to new forms of neuron inspired optical communication.

9.
J Phys Condens Matter ; 25(43): 435501, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24100170

RESUMO

We investigate the electronic photo-excitation and relaxation mechanisms involved in the optical breakdown of potassium dihydrogen phosphate crystal (KH2PO4) and its deuterated form. The dynamics and spectroscopic properties of electron-hole pair formation are investigated using time-resolved measurement of the dielectric function, and luminescence spectroscopy. The non-common mechanical and electronic characteristics of these dielectric materials are revealed by the particular structure of ablation craters and also by the complex dynamics observed in the relaxation of excited carriers. This relaxation occurs in two steps, and varies with the initial carrier density and thus with the laser intensity. We show that the defect states play a key role in the excitation pathways, and also determine the relaxation stage. The latter also depends upon the initial amount of energy of the electron-hole pair after photo-excitation. A model based on kinetic equations describing the evolution of the different level populations allows us to successfully interpret and reproduce the experimental data.

10.
Appl Opt ; 51(5): 594-9, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22330291

RESUMO

Rubidium titanyl phosphate (RTP) is widely used for electro-optical applications at low switching voltages. RTP is nonhygroscopic and does not induce piezoelectric ringing up to the megahertz range. It has large electro-optic (EO) coefficients and a high damage threshold. We present here the EO coefficient wavelength dispersion measurements in the [550,950] nm spectral range using a method based on spectral interferometry. These data are necessary for, among other things, a quantitative modelization of an EO carrier-envelope phase shifter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...